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We investigate the clustering coefficient in bipartite networks where cycles of size three are absent and
therefore the standard definition of clustering coefficient cannot be used. Instead, we use another coefficient
given by the fraction of cycles with size four, showing that both coefficients yield the same clustering prop-
erties. The new coefficient is computed for two networks of sexual contacts, one bipartite and another where
no distinction between the nodes is made �monopartite�. In both cases the clustering coefficient is similar.
Furthermore, combining both clustering coefficients we deduce an expression for estimating cycles of larger
size, which improves previous estimations and is suitable for either monopartite and multipartite networks, and
discuss the applicability of such analytical estimations.

DOI: 10.1103/PhysRevE.72.056127 PACS number�s�: 89.75.Fb, 89.75.Hc, 89.65.�s

I. INTRODUCTION

One important statistical tool to access the structure of
complex networks arising in many systems �1,2� is the clus-
tering coefficient, introduced by Watts and Strogatz �3� to
measure “the cliquishness of a typical neighborhood” in the
network and given by the average fraction of neighbors
which are interconnected with each other. This quantity has
been used for instance to characterize small-world networks
�3�, to understand synchronization in scale-free networks of
oscillators �4� and to characterize chemical reactions �5� and
networks of social relationships �6,7�. One pair of linked
neighbors corresponds to a triangle, i.e., a cycle of three
connections.

While triangles may be abundant in networks of identical
nodes they cannot be formed in bipartite networks �6–8�,
where two types of nodes exist and connections link only
nodes of different types. Thus, the standard clustering coef-
ficient is always zero. However, different bipartite networks
have in general different cliquishnesses and clustering abili-
ties �7�, stemming for another coefficient which uncovers
these topological differences among bipartite networks. Bi-
partite networks arise naturally in, e.g., social networks �8,9�
where the relationships �connections� depend on the gender
of each person �node�, and there are situations, such as in
sexual contact networks �10�, where one is interested in com-
paring clustering properties between monopartite �identical
nodes� and bipartite �two types of nodes� compositions.

In this paper, we study the cliquishness of either mono-
partite and bipartite networks, using both the standard clus-
tering coefficient and an additional coefficient which gives
the fraction of squares, i.e. cycles composed by four connec-
tions. As shown below, such a coefficient retains the funda-
mental properties usually ascribed to the standard clustering
coefficient in regular, small-world and scale-free networks.
As a specific application, two examples of networks of
sexual contacts will be studied and compared, one being
monopartite and another bipartite.

Furthermore, we will show that one can take triangles and
squares as the basic units of larger cycles in any network,

monopartite or multipartite. The frequency and distribution
of larger cycles in networks have revealed its importance in
recent research for instance to characterize local ordering in
complex networks from which one is able to give insight on
their hierarchical structure �11�, to determine equilibrium
properties of specific network models �12�, to estimate the
ergodicity of scale-free networks �13�, to detect phase tran-
sitions in the topology of bosonic networks �14�, and to help
characterize the Internet structure �15�. Since the computa-
tion of all cycles in arbitrarily large networks is unfeasible,
one uses approximate numerical algorithms �13,16,17� or
statistical estimations �18,19�. Here, we go a step further and
deduce an expression to estimate the number of cycles of
larger size, using both clustering coefficients, which not only
improves recent estimations �19� done for monopartite net-
works, but at the same time can be applied to bipartite net-
works and multipartite networks of higher order.

We start in Sec. II by introducing the expression which
characterizes the cliquishness of bipartite networks, compar-
ing it with the usual clustering coefficient. In Sec. III we use
both coefficients to estimate cycles of larger size and show
how it is applied to bipartite networks, while in Sec. IV we
apply both coefficients to real networks of sexual contacts.
Conclusions are given in Sec. V.

II. TWO COMPLEMENTARY CLUSTERING
COEFFICIENTS

The standard definition of clustering coefficient C3 is the
fraction between the number of triangles observed in one
network out from the total number of possible triangles
which may appear. For a node i with a number ki of neigh-
bors the total number of possible triangles is just the number
of pairs of neighbors given by ki�ki−1� /2. Thus, the cluster-
ing coefficient C3�i� for node i is

C3�i� =
2ti

ki�ki − 1�
, �1�

where ti is the number of triangles observed, i.e., the number
of connections among the ki neighbors. As in other studies,
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here and throughout the paper multiple connections between
the same pair of nodes are not allowed.

Similarly to C3�i�, a cluster coefficient C4�i� with squares
is the quotient between the number of squares and the total
number of possible squares. For a given node i, the number
of observed squares is given by the number of common
neighbors among its neighbors, while the total number of
possible squares is given by the sum over each pair of neigh-
bors of the product between their degrees, after subtracting
the common node i and an additional one if they are con-
nected. Explicitly, for a given node i the contribution of a
pair of neighbors, say m and n, to C4�i� reads

C4,mn�i� =
qimn

�km − �imn��kn − �imn� + qimn
, �2�

where qimn is the number of common neighbors between m
and n �not counting i� and �imn=1+qimn+�mn with �mn=1 if
neighbors m and n are connected with each other and 0 oth-
erwise. The numerator in Eq. �2� gives the number of squares
containing nodes i ,m, and n, while the denominator counts
the total possible number of squares containing these three
nodes.

To illustrate the definition giving in Eq. �2�, we show in
Fig. 1 a simple sketch of a node ��� neighborhood composed
by its first and second neighbors �� and �, respectively�.
Considering the neighbors 2 and 3, one has q123=2 squares
containing nodes 1, 2, and 3 and there are k2=5 and k3=5
neighbors of nodes 2 and 3, respectively. Since nodes 2 and
3 are not connected with each other �23=0, yielding �123
=3 and a denominator in Eq. �2� which equals six possible
squares, two squares which are observed and other four
squares corresponding to the possible combinations of all
pairs of noncommon neighbors. For neighbors 6 and 7 a
similar calculation can be done, this time with �67=1 since
the neighbors are connected with each other. The clustering
coefficient C4�i� is easily obtained from Eq. �2� just by sum-
ming the numerator and denominator separately over the
neighbors of i.

While C3�i� gives the probability that two neighbors of
node i are connected with each other, C4�i� is the probability
that two neighbors of node i share a common neighbor �dif-
ferent from i�. Averaging C3�i� and C4�i� over the nodes
yields two complementary clustering coefficients, �C3� and
�C4�, characterizing the contribution for the network cliqu-
ishness of the first and second neighbors, respectively. For
simplicity we write henceforth C3 and C4 for the averages of
C3�i� and C4�i�, respectively.

An important point to stress concerns the denominators in
the definitions of both clustering coefficients. The possible
number of triangles in Eq. �1� does not take into account the
topology of the neighborhood, in particular the number of
second neighbors. Instead, the standard way �3� to compute
C3, given by Eq. �1�, is to assume that all possible triangles
are observed when the neighbors are fully interconnected.
Consequently, possible degree-correlation biases may appear.
The same occurs for the definition of C4. Recently �20� an-
other expression for C3 was proposed with the aim to filter
out these degree-correlation biases by taking into account the
minimum number of neighbors of each pair of nodes consid-
ered. A similar approach could be done for C4, substituting
the denominator in Eq. �2� by a suitable function of the mini-
mum number of neighbors of n and m. However, here we
consider C4 as defined above, since it is our purpose to es-
tablish a parallel between C4 and the the standard definition
of C3, which itself does not take into account either the cor-
relation removal proposed in Ref. �20�.

Figure 2 shows both clustering coefficients C3 and C4 in
several topologies. In all cases C3 and C4 are plotted as
dashed and solid lines, respectively, and are averages over
samples of 100 realizations. As an example of regular net-
works, we use networks with boundary conditions where
each node has n neighbors symmetrically disposed, i.e.,
when placed in a chain, each node has an even number of
neighbors, half of them placed on one side and the other half
placed on the other side. In particular, for n=2 one obtains a
chain of nodes connected to its nearest neighbors. For these
regular networks, Fig. 2�a� shows the dependence of the
clustering coefficients on the fraction n /N of neighbors, with
N=103 the total number of nodes. As one sees C4�C3 and
for either small or large fractions of neighbors both coeffi-
cients increase abruptly with n. In the middle region C3 is
almost constant, while C4 decreases slightly. Our simulations
have shown that in regular networks the coefficients depend
only on n /N, i.e., for any size of the regular network, similar
plots are obtained.

Figure 2�b� shows the coefficients for small-world net-
works with N=103 nodes, constructed from a regular net-
work with n=4 neighbors symmetrically disposed. The coef-
ficients are computed as functions of the probability p to
rewire short-range connections into long-range connections
and they are normalized as usual �3� to the clustering coef-
ficients C3,4

0 of the underlying regular network. As one sees,
C4 yields approximately the same spectrum as the standard
clustering coefficient C3 being therefore able to define the
same range of p for which small-world effects are observed.
While here the small-world networks were constructed with
rewiring of short-range connections into long-range ones, the

FIG. 1. Illustration of the neighborhood of a central node ���
compose by its first neighbors ��� and its second neighbors ���,
i.e., the neighbors of its neighbors. First and second neighbors are
used to compute the complementary clustering coefficient C4 �see
text�.
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same features are observed when using the construction pro-
cedure introduced in Ref. �24� where instead of rewiring one
uses addition of long-range connections.

To construct scale-free networks, we use the standard pro-
cedure of Albert and Barabási with growing and preferential
attachment proportional to number of neighbors �see, e.g.,
Ref. �2� for details�. For such scale-free networks, which we
call henceforth random scale-free networks, we plot in Fig.
2�c� the distribution of both coefficients as functions of the
number k of neighbors, using networks with N=105 nodes
and by given initially m=2 connections to each node. Here,
one observes that C4�k� is almost constant as k increases,
reproducing the same known feature as the standard C3�k�

apart a scaling factor, C4�k� /C3�k� is approximately constant
for any k. In Fig. 2�d� we plot the clustering distributions for
two different deterministic scale-free networks recently stud-
ied, namely Apollonian networks �21�, represented with solid
circles �, and pseudofractal networks �23�, represented with
circles �. In both cases, the same power-law behavior al-
ready known for C3�k��k−� in these hierarchical networks is
also observed for the coefficient C4�k� with the same value of
the exponent �.

All networks in Fig. 2 are monopartite, i.e., no distinction
between nodes is made, to aim the straightforward compari-
son between both clustering coefficients, C3 and C4. Of
course, in the case that bipartite counterparts are considered,
the standard clustering coefficient C3 vanishes, and only C4
is suitable to measure the clustering between nodes.

In short, the results shown in Fig. 2 give evidence that C4
is also a suitable coefficient to characterize the topological
features in several complex networks commonly done with
the standard clustering coefficient C3. Furthermore, since C4
counts squares instead of triangles, it is particularly suited
for bipartite networks. Next, we will use this coefficient to
compare different models for networks of sexual contacts,
where both monopartite and bipartite networks arise natu-
rally.

III. ESTIMATING THE NUMBER OF LARGE CYCLES
WITH SQUARES AND TRIANGLES

Recent studies have attracted attention to the cycle struc-
ture of complex networks, since the presence of cycles has
important effects, for example, on information propagation
through the network �25� and on epidemic spreading behav-
ior �26�. In order to avoid numerical algorithms for counting
the number of cycles with arbitrary size which implies long
computation times, an estimate of the fraction of cycles with
different sizes was proposed �19�, using the degree distribu-
tion P�k� and the standard cluster coefficient distribution
C3�k�. However, this estimation yields a lower bound for the
total number of cycles and cannot be applied to bipartite
networks, as shown below. The aim of this section is two-
fold. First, to show that by using both C3 and C4 one is able
to improve that estimation, being suitable at the same time to
either monopartite and bipartite networks. Second, to explic-
itly show some limitations of the estimations below and dis-
cuss their applicability.

The estimation in Ref. �19� considers the set of cycles
with a central node, i.e., cycles with one node connected to
all other nodes composing the cycle. Figure 3�a� illustrates
one of such cycles, where the central node and each pair of
its consecutive neighbors forms a triangle, in a total amount
of four adjacent triangles. In such set of cycles, to estimate
the number of cycles with size s one looks to the central
node of each cycle which has a number, say k, of neighbors.
The number of different possible cycles to occur is

n0�s,k� = � k

s − 1
	 �s − 1�!

2
,

since one has

FIG. 2. Comparisons between the standard clustering coefficient
C3 in Eq. �1� �dashed line� and the clustering coefficient C4 in Eq.
�2� �solid line� for different network topologies, �a� in one regular
network with n neighbors symmetrically placed �N=103�, �b� in
small-world networks where long-range connections occur with
probability p �N=103 and n=4�, and �c� in random scale-free net-
works where the distribution of the clustering coefficients is plotted
as a function of the number k of neighbors �N=105 and m=2�. In all
cases samples of 102 networks were used. The distributions C3�k�
and C4�k� are also plotted for �d� Apollonian networks �21� with
N=9844 nodes ��� and pseudofractal networks �23� with N=9843
nodes ���.
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� k

s − 1
	

different groups of s nodes and in each one of these groups
there are �s−1� ! /2 different ways in ordering the s nodes
into a cycle. The fraction of n0�s ,k� of cycles which is ex-
pected to occur is p0�s ,k�=C3�k�s−2, since the probability of
having one edge between two consecutive neighbors is C3�k�
and one must have s−2 edges between the s−1 neighbors.
Therefore, the number of cycles of size s is estimated as

Ns = Ngs 

k=s−1

kmax

P�k�n0�s,k�p0�s,k� , �3�

where P�k� is the degree distribution and gs is a factor which
takes into account the number of repeated cycles. This geo-
metrical factor can be computed for each particular case of s
cycles but the estimations can be carried out without the
explicit computation of the factor �19�.

The estimation in Eq. �3� is a lower bound for the total
number of cycles since it considers only cycles with a central
node. For instance, in Fig. 3�b� while cycles of size s=4 can
be estimated with Eq. �3��, the cycle s=6 cannot since it has
no central node, and in Fig. 3�c� the above equation cannot
estimate any cycle of any size. In fact, Fig. 3�c� illustrates the
type of cycles appearing in bipartite networks, where no tri-
angles are observed. For such cycles C3�k�=0 and therefore
all terms in Eq. �3� vanish yielding a wrong estimation of the
number of cycles.

To take into account cycles without central nodes �Figs.
3�b� and 3�c��, one must consider the clustering coefficient
C4�k� defined in Eq. �2�. One first considers the set of cycles
of size s with one node ��� connected to all the others except
one as illustrated in Fig. 3�b�. In this case since there are s
−2 nodes connected to node � one has

n1�sk� = � k

s − 2
	�s − 2� ! /2

different possible cycles of size s with k the number of
neighbors of node �. The fraction of the n1�sk� cycles which
is expected to be observed is given by p1�sk�
=C3�k�s−4C4�k��1−C3�k�� since the probability of having s
−4 connections among the s−2 connected nodes is C3�k�s−4

the probability that a pair of neighbors of node � share a
common neighbor �different from node �� is C4�k� and the
probability that these same pairs of neighbors are not con-
nected is �1−C3�k��. Writing an equation similar to Eq. �3�
where instead of n0�sk� and p0�sk� one has n1�sk� and p1�sk�
respectively and the sum starts at s−2 instead of s−1 one has
an additional number Ns� of estimated cycles which are not
considered in estimation �3�. Notice that, since for Ns� one
considers at least one subcycle of size s=4, this additional
estimation contributes only for the estimation of cycles with
size s�4. We call henceforth subcycle, a cycle which is
enclosed in a larger cycle and which do not enclose in itself
any shorter cycle.

Still, the new estimation Ns+Ns� is not suitable for bipar-
tite networks, since it yields nonzero estimation only for s
=4. To improve the estimation further one must consider not
only cycles composed by one single subcycle of size s=4, as
done in the preceding paragraph, but also cycles with any
number of subcycles of size s=4. Figure 3�c� illustrates a
cycle of size s=6 composed by two subcycles of size 4. In
general, following the same approach as previously, for
cycles composed by q subcycles of size 4 one finds

nq�s,k� =
�s − q − 1�!

2
� k

s − q − 1
	

possible cycles of size s looking from a node with k neigh-
bors and a fraction pq�s ,k�=C3�k�s−2q−2C4�k�q�1−C3�k��q of
them which are expected to be observed. For q=0 one con-
siders cycles as the one illustrated in Fig. 3�a�, while for q
=1 and q=2 one considers the set of cycles with one and two
subcycles with size 4, as illustrated in Figs. 3�b� and 3�c�,
respectively. Summing up over k and q yields our final ex-
pression

Ns = Ngs 

q=0

�s/2�−1



k=s−q−1

kmax

P�k�nq�s,k�pq�s,k� , �4�

where �x� denotes the integer part of x. In particular, the first
term �q=0� is the sum in Eq. �3�. The upper limit �s /2�−1 of
the first sum results from the fact that the exponent of C3�k�
in pq�s ,k� must be non-negative, s−2q−2�0. The estima-
tion in Eq. �4� not only improves the estimated number com-
puted from Eq. �3�, but also enables the estimation of cycles
up to a larger maximal size. In fact, since in the binomial
coefficient

� k

s − 1
	

of Eq. �3� one must have s−1�k�kmax, one only estimates
cycles of size up to kmax+1, while in Eq. �4� the maximal
size is 2kmax, as can be concluded using both conditions s
−2q−2�0 and s−q−1�kmax.

Figure 4 compares two cases treated in Ref. �19�, both
with a degree distribution P�k�= P0k−� and coefficient distri-
butions C3�k�=C3

�0�k−�, using one value of ��1 �Fig. 4�a��
and another one �	1 �Fig. 4�b��. Dashed lines indicate the
estimation done with Eq. �3�, while solid lines indicate the
estimation done with Eq. �4�. In both cases, the latter estima-

FIG. 3. Illustrative examples of cycles �size s=6� where the
most connected node ��� is connected to �a� all the other nodes
composing the cycle, forming four adjacent triangles. In �b� the
most connected node is connected to all other nodes except one,
forming two triangles and one subcycle of size s=4, while in �c� the
same cycle s=6 encloses two subcycles of size s=4 and no tri-
angles �see text�.
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tion is larger. For ��1 the difference between both estima-
tions decreases with the size s of the cycle. For �	1 the
difference between the estimations increases with s beyond a
size s*
kmax. Clearly, from Fig. 4�b� one sees that kmax+1 is
the larger cycle size for which Eq. �3� can give an estimation,
while for Eq. �4� the estimation proceeds up to 2kmax �par-
tially shown�. In both cases, the typical size for which Ns
attains a maximum is numerically the same for both estima-
tions, as expected. Moreover, for �	1 �Fig. 4�b��, beyond a
size of the order of kmax,Ns / �Ngs� in Eq. �4� decreases expo-
nentially with s, and not as a cutoff as observed for Eq. �3�.
In fact, the deviation of Eq. �3� from the exponential tail, is
due to the fact that for very large cycle sizes �s�kmax� Eq.
�3� can only consider very few terms in its sum.

Another advantage of the estimation in Eq. �4� is that it
estimates cycles in bipartite networks. For bipartite network
there are no connections between the neighbors, i.e., all sub-
graphs are similar to the one illustrated in Fig. 3�c�. There-
fore all terms in Eq. �4� vanish except those for which the
exponent of C3�k� is zero, i.e., for s=2�q+1�. Consequently,
since q is an integer, Eq. �4� shows clearly that in bipartite
networks there are only cycles of even size, as already
known �8�. Moreover, substituting q= �s−2� /2 in Eq. �4�
yields a simple expression for the number of cycles in bipar-
tite networks, namely

Ns
Bipart = Ngs 


k=s/2

kmax

P�k�
�s/2�!

2
� k

s/2
	C4�k�s/2−1. �5�

A simple example to illustrate the validity of Eq. �4� is the
fully connected network, where each node is connected to
everyone else. In this case the number of cycles with size s is
given by

Ns = �N

s
	 �s − 1�!

2

The factor �s−1�! counts for the arrangements between s
−1 nodes in each combination of s nodes, while the division
by two is due to the undirected links. To compute Ns from
Eq. �4� one has for the particular case of fully connected
network, P�k�=C3�k�=C4�k�=�k−N+1 ,kmax=N−1, and gs

=1/s. Consequently the only nonzero term in the first sum is

the one for q=0, while the nonzero term in the second sum is
the one for k=N−1, yielding the same result as above.

Both the estimation in Eq. �3�� and the one in Eq. �4� are
particularly suited for networks or subnetworks where nodes
are highly connected with each other, since in those situa-
tions there is a very large number of centrally connected
cycles as the ones illustrated in Fig. 3. Highly connected
subnetworks appear, for instance, in social networks which
are composed by communities �22�. In Ref. �19�, for in-
stance, the estimation of small cycles from Eq. �3� is com-
pared with the true values computed for several empirical
networks, namely the Internet, the coauthorship web and se-
mantic networks. While for s=3 and 4 the estimation is
clearly good, for s=5 there is a clear underestimation, due to
the appearance of no centrally connected cycles. Of course
one expects that, similarly to what is observed in Fig. 4, the
estimation in Eq. �4� improves the one used in Ref. �19� for
such situations. However, one should stress that the draw-
back of such estimations for larger cycles both estimations
get worse.

Next we illustrate this point using a particular network,
so-called pseudofractal network, introduced by Dorogovtsev
and co-workers �23�. This network is scale free and is con-
structed starting with three nodes connected with each other
�generation m=0�, and iteratively adding new generations of
nodes such that in generation m+1 one new node is added to
each previous edge and it is connected to the two nodes
joined by that edge. For this network, the exact number of
cycles with size s can be written iteratively �27� as

Ns
�m+1� = 


l=3

s � l

s − l
	Ns

�m�, �6�

for s�4 and N3
�m+1�=N3

�m�+3m.
Figure 5 shows the real number of cycles of the pseudof-

FIG. 4. Estimating the number of cycles using Eq. �3�, dashed
lines, and Eq. �4�, solid lines. Here we impose a degree distribution
P�k�= P0k−� with P0=0.737 and �=2.5, and coefficient distribu-
tions C3,4�k�=C3,4

�0�k−� with �a� C3
�0�=2,C4

�0�=0.33,�=0.9 and �b�
C3

�0�=1,C4
�0�=0.17,�=1.1. In all cases kmax=500.

FIG. 5. �a� The exact number of cycles as a function of the size
for the pseudofractal network �23� compared with �b� Ns /Ngs of the
analytical estimations in Eqs. �3�, dashed lines, and �4�, solid lines.
From small to large curves one has pseudofractal networks with
m=2, 3, 4, 5 generations �see text�.
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ractal network �Fig. 5�a�� with the quantity Ns / �Ngs� �Fig.
5�b�� for the pseudofractal network. In Fig. 5�b� solid lines
indicate our estimation, while dashed lines indicate the pre-
vious estimation in Ref. �19�. In both cases, the underestima-
tion is very significant when compared with the exact num-
ber from Eq. �6�. Nevertheless, even in this case, the
estimations predict the shape of the cycle distributions. Up to
our knowledge, complex networks for which the exact num-
ber of cycles may be computed having most nodes highly
connected are not known.

It is important to notice that triangles and squares may
appear in any multipartite network �except in bipartite ones,
where triangles are absent�. Therefore, the estimation de-
scribed and studied in this section can be applied not only to
bipartite networks but to any multipartite network of any
order. In the next section we will focus on the applicability
of the clustering coefficient C4 in empirical sexual networks
�monopartite and bipartite� with the aim to compare simu-
lated results for such networks.

IV. CYCLES AND CLUSTERING IN SEXUAL NETWORKS

In this section we apply both coefficients C3 and C4 in
Eqs. �1� and �2� to analyze two real networks of sexual con-
tacts. One network is obtained from an empirical data set,
composed solely by heterosexual contacts among N=82
nodes, extracted at the Cadham Provincial Laboratory and is
a 6-month block data �28� between November 1997 and May
1998. The other data set is the largest cluster with N=250
nodes in the records of a contact tracing study �29�, from
1985 to 1999, for HIV tests in Colorado Springs �USA�,
where most of the registered contacts were homosexual. Fig-
ure 6 sketches these two networks, where one can see that
cycles of different sizes appear. While the network with only

heterosexual contacts is clearly bipartite, the network with
homosexual contacts is monopartite.

For the two networks in Fig. 6, Table I indicates the num-
ber T of triangles, the number Q of squares and the coeffi-
cients C3 and C4. As one sees, although the heterosexual
network has less squares than the homosexual network due
to its smaller size, C4 is much larger. Another feature com-
mon for both networks is L /N�1, i.e., an effective coordi-
nation number of 2L /N�2.

In order to ascertain possible nontrivial features in these
empirical networks, we compare the topological measures of
them with the ones of a null model having the same degree
distribution. The null model is a randomized version of the
empirical networks, constructed by rewiring connections ran-
domly selected �31�. Namely, whenever one pair of links is
selected, say i↔ j and k↔ l, we substitute this link by two
others, one connecting i and k and another connecting j and
l. While in the heterosexual network the number of squares
and consequently the value of C4 is overestimated, for the
homosexual network the null model yields reasonable results
for both clustering coefficients, although there is a large dis-
crepancy in the number of triangles and squares. In order to
compare the number of squares without the effect of the
number of triangles in the network, we consider also the case
of a null model where additionally to the degree distribution,
the number T of triangles is also the same. In this case, Table
I shows still an underestimation of C3 and a much larger
number Q of squares. Notice that, while the total number of
triangles is the same, the standard clustering coefficient �C3�
can be nevertheless different, since it is an average over the
local clustering coefficient of each node, which depends not
only on the number of triangles the node belongs to but also
on its degree.

Recently, we introduced �10� a model to simulate the sta-
tistical features of these networks of sexual contacts. The
model is a sort of granular system with low density com-
posed by N mobile particles representing persons and colli-
sions between them representing their sexual contacts. Ini-
tially, all agents have a randomly chosen position and
moving direction with the same velocity modulus �v�0� and no
connections. When for the first time two agents collide, the
corresponding collision is taken as the first connection in the
network. Through time, more and more collisions occur giv-
ing rise to new connections and enabling the network
growth, until the number of connected agents attains the re-
quired network size, at which the simulation is stopped and
the accumulated number of connections is determined. As a
particular feature of our model, we choose a collision rule
where the velocity of each agent increases with the number
of previous contacts. More details concerning this model are
given in Ref. �10�.

Using the same number of nodes as in the real networks
illustrated in Fig. 6 and considering two types of nodes for
the heterosexual �bipartite� case, we obtain with the agent
model similar results for L ,T ,Q ,C3, and C4, as shown in
Table I where values represent averages over samples of 100
realizations. As one sees, in general, the agent model yields
values much closer to the ones for the empirical networks,
than the two null models considered above. Remarkably, for
the bipartite case not only the number of connections and the

FIG. 6. �Color online� Sketch of two real sexual contact net-
works having �a� only heterosexual contacts �N=82 nodes and L
=84 connections� and �b� homosexual contacts �N=250 nodes and
L=266 connections�. While in the homosexual network triangles
and squares appear, in the heterosexual network triangles are absent
�see Table I�.
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number of squares are numerically the same, but also C4 is of
the same order of magnitude. Similar values of the topologi-
cal quantities are also obtained for the monopartite case, with
the exception of C4.

In Fig. 7 we plot the degree and clustering coefficient
distributions for the monopartite network of sexual contacts
sketched in Fig. 6�b�, while in Fig. 8 we plot the distributions
for the bipartite network �Fig. 6�a��. In both figures bullets
indicate the distributions of the empirical data, while solid
lines indicate the distributions of the networks obtained with
the agent model, imposing the same size as the real network,
i.e., stopping the simulation when the number of connected

agents equals the size of the corresponding empirical net-
work, and taking averages over a sample of 100 realizations.

The results above concern small empirical networks. To
improve the particular study of sexual networks reproduced
by our model, larger networks of sexual contacts should be
also studied and comparisons with a null model �31� must be
carried out to validate the agent model. These points are
being further studied and will be presented elsewhere �30�.
The main point here is that the results above show already
that the complementary clustering coefficient C4 is suitable
for comparing the cliquishness of neighborhoods in either
monopartite and bipartite counterparts of the same complex
networks, while the standard clustering coefficient is not.

With the agent model one is able to construct larger net-
works than the empirical ones. In such large networks cycles

TABLE I. Clustering coefficients and cycles in two real networks of sexual contacts �top�, illustrated in
Fig. 6, one where all contacts are heterosexual �Fig. 6�a�� and another with homosexual contacts �Fig. 6�b��.
In each case one indicates the values of the number N of nodes, the number L of connections, the number T
of triangles, the number Q of squares and both clustering coefficients C3 and C4 in Eqs. �1� and �2�,
respectively. The values of these quantities are compared with the ones of a null model �see text� with the
same degree distribution for two cases, one where the number of triangles is found and another where this
restriction is not imposed, and also with networks constructed with the agent model recently introduced �10�.
Samples of 100 realizations were used in each case.

N L T Q �C3� �C4�

Heterosexual
�Fig. 6�a��

82 84 0 2 0 0.00486

Homosexual
�Fig. 6�b��

250 266 11 6 0.02980 0.00192

Heterosexual
�Null model�

82 84 0 8.47 0 0.0451

Homosexual
�Null model�

250 266 6.94 16.2 0.011 0.00373

Heterosexual
�Null model, same T�

82 84 0 8.47 0 0.0451

Homosexual
�Null model, same T�

250 266 11.0 21.462 0.0145 0.00477

Heterosexual
�Agent model�

82 83.63 0 1.45 0 0.01273

Homosexual
�Agent model�

250 287.03 8.23 10.52 0.02302 0.01224

FIG. 7. Comparing topological features between networks ob-
tained from the agent model �solid lines� used to reproduce one real
monopartite network of sexual contacts �bullets�, �a� cumulative
degree distribution Pcum�k�, �b� standard clustering coefficient C3�k�
in Eq. �1�, and �c� clustering coefficient C4�k� in Eq. �2��. Here N
=250 and samples of 100 realizations were used.

FIG. 8. Distributions for one real bipartite network of sexual
contacts �bullets� compared with the one of networks obtained from
the agent model �solid lines�, �a� cumulative degree distribution
Pcum�k�, �b� clustering coefficient C4�k� in Eq. �2�. Here C3�k�=0
always, N=82 and samples of 100 realizations were used.
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of different size may then appear and one important question
is to know the frequency of cycles of any order. Using the
agent model for large networks, and computing only their
degree distribution and the two clustering coefficients we can
then estimate the distribution of cycles in those networks.
Figure 9 shows the distribution of the fraction Ns / �Ngs� of
cycles as a function of their size s, for a monopartite network
�Fig. 9�a�� and a bipartite network �Fig. 9�b�� composed by
N=1000, 5000, and 10 000 nodes. Here, while monopartite
networks show an exponential tail preceded by a region
where the number of cycles is large, bipartite networks are
composed by cycles whose number depends exponentially of
their size. Furthermore one observes a clear transition for a
characteristic size, which seems to scale with the network
size.

V. DISCUSSION AND CONCLUSIONS

We introduced a clustering coefficient similar to the stan-
dard one, which instead of measuring the fraction of tri-
angles in a network measures the fraction of squares, and
showed that with this clustering coefficient it is also possible
to characterize topological features in complex networks,
usually done with the standard coefficient. We showed ex-

plicitly that the range of values of the probability to acquire
long-range connections in small-world networks and the
typical clustering coefficient distributions of either random
scale-free and hierarchical networks are approximately the
same. In addition, we showed that this second clustering co-
efficient enables one to quantify the cliquishness in bipartite
networks where triangles are absent. Thus, one should take
triangles and squares simultaneously as the two basic cycle
units in any network.

An application of both clustering coefficients was pro-
posed, namely to estimate the number of cycles in any net-
work, either monopartite or multipartite. Using a recent esti-
mation which yields a lower bound of the number of cycles
in monopartite network up to a size s�kmax+1 where kmax is
the maximum number of neighbors in the network, we de-
duce a more general expression which not only improves the
previous estimation but is also suitable for bipartite networks
and enables one to estimate cycles of size up to 2kmax. Fur-
thermore, in the particular case of bipartite networks our es-
timation yields as a natural consequence that only cycles of
even size may appear.

To illustrate the applicability of the complementary clus-
tering coefficient in bipartite networks, we studied a concrete
example of two sexual networks, one where only hetero-
sexual contacts occur �bipartite network� and another with
homosexual contacts �monopartite�. The results obtained
with the two real networks were found to be similar to the
ones obtained with an agent model recently introduced.

All in all, our analytical estimation gives a simple way to
extract information concerning the distribution of cycles in
multipartite networks, and in particular the clustering coeffi-
cient C4 can be regarded as a suitable measure of neighbor-
hood cliquishnesses in bipartite networks.
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